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The fluctuation growth of a macroscopic bubble containing a vapor in a 
moderately superheated or tensile-stressed volatile liquid is treated as the two- 
dimensional diffusion of a nucleus of a new phase in the space of variables made 
up of its volume v and the pressure of the vapor in it p. The shape of the 
free energy surface of the system "liquid plus bubble with vapor" in the plane 
(v; p) in the neighborhood of the labile equilibrium of the system is examined, 
and a two-dimensional nucleus distribution function given with respect to its 
variables is derived. Close to the pass in the surface a nondiagonal diffusion 
tensor in the space (v, p) is also calculated. A two-dimensional stationary equation 
of the kinetics of the formation of a new phase of Kramers type is solved, 
and an expression is derived for the probability of homogeneous nucleation 
for an arbitrary viscosity and volatility of a liquid far from its critical point. 
Various limiting cases are examined. 

KEY W O R D S  : Nucleation; boiling-up. 

1.  I N T R O D U C T I O N  

Considera t ion  of  the thermodynamics  and  kinetics of the format ion  of a 
new phase (z-s) resulted in the development  of a general method for the 

description of a first-order phase t ransi t ion,  where the growth of macroscopic 
nuclei of  the new phase is interpreted in terms of diffusion a long the 

nucleus size axis. In  this case, a certain field of generalized forces due to 
the " s u p e r s a t u r a t i o n "  of the system under  examina t ion  is superimposed on 

the size axis. The problem of finding the fo rmat ion  rate of the new phase 
consists in de termining the diffusion flow through a potent ial  barrier separat- 
ing the quasi-single-phase region of  the size axis f rom the two-phase region. 

If  the use of one variable proves to be insufficient for the macroscopic 
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characterization of a new-phase nucleus, the solution of the nucleation 
problem is considerably complicated. Two variables were used for the first 
time for the description of the first-order phase transition in Ref. 9 in order 
to study the phase transition in binary systems, where two parameters of a 
nucleus naturally arise: its size and composition. Subsequently, a similar 
approach to examining heteromolecular condensation was generalized for 
multicomponent systems. (1~ The two-parameter approach proved to be 
useful in the theory of nonisothermal nucleation, (1 t) where, in order to take 
into account the effect of the release of latent heat in a condensing 
droplet, it was characterized by its size and temperature. 

In Ref. 12, an attempt was made to develop nucleation theory in a 
more general way, from the point of  view of the multiparameter description 
of a new-phase nucleus and of determining the preexponential factor. 
In this study, the nucleation process is interpreted as the decomposition 
of the metastable state of a supersaturated system through thermal activation 
of a localized unstable fluctuation (for example, of a near-critical droplet). 

This approach (13) was applied to the description of the condensation 
of a supersaturated vapor in the vicinity of  the critical point. The multi- 
parameter approach to nucleation theory was used in a similar way in 
Ref. 14, where condensation theory was generalized for the case of many 
coordinates of a nucleus, starting from the description of dense gases by 
means of the basic kinetic equation. The authors have applied the formalism 
developed in Ref. 14 mainly to describing condensation in the vicinity of 
the critical point, as well as to describing the condensation of a mixture 
of gases." 5) 

In the present study, 2 we shall consider the boiling up of a viscous, 
volatile liquid in terms of the diffusion of a vapor-containing bubble nucleus 
in the space of two variables: its volume v and the pressure of vapor in it p. 

Considered from the point of view of the multiparameter description of 
the new-phase nucleus, the present study is cognate with the studies of  
Refs. 9--15. However, let us note two essential differences of the former 
from the latter. 

First, from the very beginning we have posed as our object, not the 
description of the most general boiling-up scheme, but the development of the 
theory .of the boiling up of a liquid having arbitrary volatility and viscosity 
at moderate "supersaturat ions" of the system. Though this problem seems 
to be simpler, it proves to be fairly complicated, especially in the case where 
we attempt to develop a strict theory. Let us note the following in this 
connection: although there is a great number of  papers dealing with the 
boiling up of liquids (see, for example, the references in Refs. 16 and 17), few 
theoretical investigations concern the very process of formation (but not of 

2 See also Ref. 28. 
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the supercritical growth!) of  nucleus bubbles, inasmuch as most studies 
dealing with the boiling up of  liquids are characterized by a purely engineering 
approach. As we limit ourselves to the case of moderate superheatings 
and/or tensions of the liquid, we shall deal with a macroscopic bubble 
nucleus possessing a distinct vapor-liquid boundary. 

Second, in distinction to Refs. 12 and 14, the calculations of the 
boiling-up rate are based on an original method for the calculation of the 
preexponential factor of  an equilibrium bubble distribution function, (18) 
based on taking into consideration the grand Gibbs ensemble of  all possible 
states of the volume of  liquid in which nucleation takes place. 

Let us consider the physical background of the problem. In a large 
volume of  liquid W having rigid adiabatic walls, let us separate off a small 
part, say volume V, by using a semipermeable partition having pores of such 
size that near-critical bubbles cannot pass through them. The volume V must 
satisfy the relationship 

v c << V<< W (1) 

where v c is the critical bubble volume. 
The problem involves calculating the probability v [ s ec - ' ]  of  the 

formation of one hypercritical vapor-containing bubble in volume V per 
unit time under the condition of a single-phase state of  "med ium"  W -  V. 
In this case, we will neglect the probability of the simultaneous existence 
of  several near-critical bubbles in volume V. 

2. A N A L Y S I S  OF T H E  S H A P E  OF T H E  
FREE E N E R G Y  S U R F A C E  

The dynamics of a change in the state of  a real bubble in a volatile 
liquid is fairly complex. Both thermodynamic equilibrium with the surround- 
ing liquid as well as mechanical equilibrium with the external pressure may be 
absent in a bubble. In addition, inside the bubble there exist inhomogeneities 
of  pressure p and temperature 0, and there are variations in temperature 
at the bubble boundaries due to variations in the number of molecules 
in it, and uncertain changes in its form for given v, etc. 

The macroscopic bubble will be considered to be spherical. Also, we 
shall not consider the temperature effects at the bubble boundaries, which 
may be taken into account by a correction to the diffusion coefficient. ('9) 
As regards inhomogeneities o fp  and 0 in the bubble, we will neglect them both, 
because we assume that the characteristic times for establishing the hydro- 
static and the thermodynamic equilibria inside the bubble are much shorter 
than the characteristic times of changes in the bubble size and in the number 
of the molecules of vapor in it. Therefore, at any moment of time, the 
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pressure p will be related to the number of molecules N~ in the bubble by 
the ideal-gas equation of state: 

pv = N~O (2) 

The use of this equation means that we consider 6 - P~/Pt << 1, where p~ 
and p~ are the vapor and liquid densities [cm-~], respectively. According to 
condition (1) and in view of the large heat capacity of the liquid, the tempera- 
ture 0 [ergs] will be considered as constant during the nucleation process. 

Let us emphasize that it is precisely the difference between the pressure 
p and the saturated vapor pressure in a bubble of given curvature (i.e., the 
absence of thermodynamic equilibrium) that is responsible for the appearance 
of the second bubble variable: p. 

The free energy of a spherical bubble of volume v containing N,, 
molecules of vapor, in a liquid raised to a temperature 0 under a pressure P 
is equal to the minimum work of its formation: 

F~p = v(P - p )  + as -t-, Nv[l~v(P, O) - #,(P, 0)] (3) 

Taking into account the condition of the thermodynamic equilibrium 
o f  the critical bubble with the surrounding liquid #v(Pc, 0) = #~(P, 0) and 
the expression I~(P, O) = I~(pc, O)+ 0 ln(p/p~) we transform Eq. (3), 

F~p = v(P - p) + as + N~O ln(p/p~) (4) 

where Pc is the saturated vapor pressure in the critical bubble. 
Passing over to dimensionless variables x =- v/vc, y =- PIPe, and qJ - F~jO 

and expanding W close to the point (1, 1), corresponding to the labile 
equilibrium of the system "liquid plus bubble with vapor" in volume V, 
in a power series in A x = x - 1  and A y = y - 1  up to the second 
order inclusively, we obtain 

~'(x, y) = ~t'~ + �89 ~i 6 0  

(/oR (6x)2 (~y)2 Ay) l x 0 + + (5) 
l/R,/\ay/ 5 U  5U, 

where 

( 02ud/Ox21c 02W/~X@lc'~ { -2asc /90  0 ~ = ( 1 / R  x 0 ) (5a) 
A = \02W/@ c3xlc ~?2tp/~y2l~ e I = \ 0 N~C] \ 0 1/Ry 

is the matrix of second derivatives Ud(x, y) at the pass point. Here (Ar) = 
(Ax, Ay) is the radius vector of an arbitrary point, which is drawn from the 
pass point; Wc is the dimensionless work of critical nucleus formation; 
R x and Ry are the main radii of curvature of the surface W(x, y) at point 
(1, 1); cr is the surface tension [gsec-2];  s is the critical bubble surface 
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a r e a  [ - c m 2 ] ;  and N~ c is the equilibrium number of molecules of vapor in 
the bubble. In this case, the first derivatives 0~'/0x[c and c~/c?ylc are both 
equal to zero due to the thermodynamic and mechanical equilibrium con- 
ditions, respectively. The absence of a crossed square term in Eq. (5) is 

attributable to the fact that Ax Ay = 0, i.e., that the fluctuations of the 
variables x and y are statistically independent, at least close to the pass. 

From Eq. (5a) it appears that the main radii of curvature R x and Ry 
have different signs--that is, the labile equilibrium point (1, 1) of the 
system is always a hyperbolic point of the surface. In that case, the shape 
(4) of the surface of the bubble free energy in the neighborhood of the pass 
may be approximated by the surface of a hyperbolic paraboloid (" saddle"). 

This saddle-type pass of the system free energy surface lies inside the 
first quadrant of the surface (x, y), parallel to the coordinate axes. The pass 
point is the intersection point of the thermodynamic equilibrium line (I) with 
the mechanical equilibrium line (II) (see Fig. 1), the lines being defined in 
(x, y) coordinates by the expressions. 

Y = Yoo exp(--pvCb/Pl x l / 3 )  (6) 

and 

Y = Yext + b~ xl /3 (7) 

where Yoo = Poo/Pc, Yext - -  P/Pc, Poo is the saturated vapor pressure over the 
flat surface, P is the external pressure applied to the liquid, and 

b = 2a/per c = 1 - P/Pc (8) 

is the ratio of the capillary pressure and vapor pressure Pc in the critical 
bubble. For an increase in the tensile stretching and superheating of the 
liquid, the values of r c and Pc decrease. Hence, the parameter b = 2a /&r  c 

may be used as a measure of the "supersaturation" of the volatile liquid 
relative to the boiling-up process. 

In this region lies the thermodynamically most advantageous path (III) 
of the fluctuation growth of the nucleus, the path connecting the neighbor- 
hood of the origins of the coordinates with the pass point. It represents the 
"bot tom of a t rough" running through the pass. From the point of view 
of the theory of surfaces, (2~ that bottom is defined by one of the two lines 
of curvature of the surface (i.e., lines that have tangents at all points oriented 
parallel to the surface main directions) passing through the pass point. 

The differential equation of those lines of curvature i s  (2~ 

[ p q t  - (1 + q2)s] + [(1 + pZ)t  - (1 + q2)u] d y  
dx  

n c ( l  n u p2)S -- pqu  = 0 (9) 
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Fig. 1. Projection of the dimensionless free energy surface ~(x, y) of the system in the neigh- 
borhood of the pass onto the plane of dimensionless variables (x, y). The cross indicates the 
main axes of the saddle-shaped pass; I and II are the nucleus phase and mechanical equilibrium 
lines, respectively; III is the nucleus growth line which is the most advantageous from the 
energy point of view, and IV is the "watershed" between the quasimonophase and the two-phase 
regions of the plane (x, y). a and Q are the directions of steepest descent nxy/~oxy and of the 
nucleus flux at the pass point, respectively. 

where 
~ylJ ( ~  ~2tllJ (~2~ (~ 2 ~IJ 

P ~- ~?x' q = ~-y, u = ~ - 2 '  s = ~x c~y t ~- 0y 2 (9a) 

in combina t ion  with the condit ion dy/dx]c = 0 allows the t rough bo t t om 
line to be prolonged inside the region of  small nuclei until the macroscopic  
expression (4) o f  the bubble free energy keeps its validity in it. The second 
curvature line (IV), passing through the pass point  and satisfying the con- 
dition dy/dx[c = oe, is the line o f  a ridge forming a "wa te r shed"  between 
the quaSi-single-phase and the two-phase regions o f  the plane (x, y). 

In  the general case o f  a viscous and volatile liquid, the fluctuation 
growth of  subcritical bubbles is not  connected with the thermodynamic  
equilibrium line I, the mechanical  equilibrium line II,  or even with the 
trajectory I I I  which is the m o s t  advantageous  f rom energy considerations. 

This is attributable to the following fact:  besides the physical parameters  
o f  the volatility and the supersaturat ion of  the liquid, to which all three 
aforesaid lines are connected,  the nucleation process is also controlled by 
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the viscosity. The viscosity influences the nucleation process, not through the 
shape of the potential in the space (x,y),  but through a nondiagonal 
diffusion tensor. Therefore, we shall be able to find the most probable 
nucleus growth trajectory only when, after having solved the two-dimensional 
diffusion equation, we have derived an expression for the vector flux Q as 
a function of x and y. Let us consider the case of an ideal, inertialess 
liquid as an example to illustrate how essentially the viscosity of the liquid 
changes the most probable nucleus growth trajectory. 

In this case, for any pressure fluctuation, the bubble volume is "adjusted 
instantaneously" in such a manner that the bubble is in mechanical 
equilibrium. Consequently, on the basis of  physical considerations it follows 
that in the given limiting case, the mechanical equilibrium line II is the most 
probable nucleus trajectory. D6ring (4) adopted for the totality of  subcritical 
nuclei a hypothesis of  mechanical equilibrium. This means replacing the 
examination of an arbitrary liquid by that of  an ideal, inertialess liquid. 

However, it turns out that the mechanical equilibrium of a bubble is 
not stable at all the values of supersaturation and volatility of a liquid. 
To clarify this question, we use the stability condition of  the mechanical 
equilibrium of  a near-critical bubble. 

In an ideal, inertialess liquid a volume change occurs much more rapidly 
than does a variation in the number of  vapor molecules in a bubble. Hence, 
the state equation (2) in (x, y) coordinates may be written in the following 
manner: xy = 1. On calculating at the pass point the derivative dy/dx from 
the state equation and the mechanical equilibrium equation (7), we obtain 
that the mechanical equilibrium of  the near-critical bubble is stable at b < 3 
and unstable at b > 3. 

Thus, in the ideal, inertialess liquid the most probable trajectory of  the 
fluctuation growth of a subcritical nucleus coincides with the mechanical 
equilibrium line at b < 3. Now, at b > 3, the most probable trajectory does 
not coincide with the line II, and its determination requires an analysis of  
the general expression for the vector flux Q. 

D6ring (4) connected the growth of nuclei with mechanical equilibrium 
condition at b > 3. Hence, the incorrect conclusion was drawn that the 
nucleation rate tends to infinity at b - *  3; and that there is no continuity 
of the formulas in Ref. 4 when b passes through 3. 

Taking into account Eq. (2), we find that the mean curvature H(x, y) 
of  the surface (5) has the form 

H(x,y)=~ ~+~y = 2 \  ~ ~ - j = ~ -  1 (10) 

where 

b / 3  = - R y / R x  = 2~/3rcpc (1 l) 
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Considering H ( x ,  y ) ,  we find that the dimensionless parameter b is the ratio 
of the main curvature radii of the pass, which characterizes the "pass width." 
As the superheating or tensile stress of the volatile liquid increases, that is, 
upon going from b<< 3, H >> 0, IR~[ >> Ry to b >> 3, H << 0, LR~[ << Ry, the 
pass changes from wide into narrow. Thus, in the two-dimensional approach, 
it is easy to see that the transition of the mean curvature of the surface 
through the zero point causes no break in the continuity of the matrix 
[-see Eq. (5a)] or the mat r ix / )  [see Eq. (B17)], the specification of which 
completely defines the nucleation process. Let us examine the two- 
dimensional distribution function q~y, which, as is shown in Appendix A, 
has the form 

q),,, = goNvN~CNv c e x p [ - T ( x ,  y)J (12) 

where T is given in Eq. (5), N v  = V p l ,  N~ ~ = v~pv c, N~ c = vcpt,  and go is the 
total probability that volume V does not contain bubbles. 

Substituting Eq. (5) into Eq. (12), we see that close to the pass, the 
variables in q~y are separated: 

(p~y = ~oxcpy (13) 

q)~ = g o N v N {  exp _u?~ + ~ (Ax)2 (13a) 

q~, = Nv c exp[-�89 2] (13b) 

The function q~ describes the equilibrium distribution of nuclei along 
the bottom of the trough running through the pass. That function is similar 
to the ordinary distribution function introduced by Zeldovich C8) in the one- 
dimensional nucleation problem. The function q)y, describing the equilibrium 
distribution of bubbles according to the pressure in them--that  is, in the 
trough cross section--requires, according to fluctuation theory, (21) ordinary 
normalization 

f_ -~ ~oy d(Ay) 1 

Consequently, instead of Eq. (13b), a correctly normalized transverse 
distribution function will have to be written: 

= (NvC'] 1/2 
~0y \ ~ / /  exp [- - �89 2 ] (13c) 

the presence of which is one of the peculiar features of the two-dimensional 
nucleation problem. Then, using Eq. (13c), we obtain instead of Eq. (12) 

q),,y = go  Vvcpl2(N~C/2rc) ~/2 exp[ -- Ud(x, y)] (13d) 
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3. CALCULATION OF THE NUCLEATION 
PROBABILITY 

In Section 1 we considered a volume V of liquid which, in the 
nucleation process, may be found in different states differing from one 
another in energy E, the number of molecules N in V, the volume of a 
nucleus bubble, and the pressure in it. 

The totality of all possible states--single phase and two phase- -of  the 
volume V represents the Gibbs grand ensemble. In that case, the volume 
W - Vplays the role of a single-phase thermostat and a reservoir of molecules 
having a given chemical potential. 

From the point of view of statistical physics, the nucleation process is 
determined by the flux Q of  the states of the volume V per unit time, 
which is directed from metastable, quasi-single-phase states of the volume 
V (which, in view of  the absence of a macrobubble, is characterized by two 
variables only: E and N) to its two-phase states containing a supercritical 
bubble (which are characterized by, besides the aforementioned two variables, 
two variables pertaining to the bubble). 

Let us note that, in view of inequality (1), the formation and growth 
of a bubble in V changes but slightly the fluctuations of such thermodynamic 
characteristics of  volume Vas its energy E and the total number of molecules 
N. Thus, these variables form an almost invariable "background"  on which 
the process of  the-nucleus fluctuation growth develops. 

In order to get rid of  the "background"  of variables E and N, we 
pass over from the four-dimensional space of states of  the volume V to the 
two-dimensional space of variables ~ and p. Each point of this space is a 
" t r ace"  of the space of variables E and N and possesses almost the same 
statistical weight go. Summing up the quasi-single-phase states with respect 
to E and N, we obtain the total probability go of the states of the volume V 
in which there is no macroscopic nucleus present (see Appendix A). 

Integrating the flux Q flowing through the pass over its cross section, 
we find the total flux I directed from the heterophase fluctuation region to 
the two-phase region of  the plane (v, p). Dividing the total flux I by go, we 
obtain 

v=I/9o (14) 

where v is the nucleation probability per unit time in volume V containing 
no macrobubbles in its metastable state. 

To calculate Q, it will be necessary to solve a two-dimensional bubble 
diffusion equation in the space of dimensionless variables (x, y) exhibiting 
a potential shape ~xy- In the neighborhood of the pass, the two-dimensional 
equation of the nucleation kinetics may be written as an equation of the 
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continuity of  flux Q, which is similar to that suggested by Zeldovich ~s) for 
the one-dimensional case 3 : 

~n/Ot = div Q (15) 

Q = ~oxyl5 grad(n/rpxy ) (15a) 

where goxy- g0(x, y) is the equilibrium nucleus distribution density with 
respect to the variables (x, y); n - n(x, y) is the nucleus distribution density 
in the nucleation process; and /3 is the "generalized diffusion" tensor, 
whose calculation is given in Appendix B. Considering only one nucleus in 
volume V, we normalize n by the condition that So n dx dy - -  1. Already 
when considering the potential shape (4), we have assumed that the external 
pressure P and the temperature of  the liquid 0 are constant. In other words, 
we assume that no variation in tensile stress or in the superheating of the 
liquid occurs in the nucleation process. Hence, we assume the nucleation 
process is steady (~nxy/~?t) = 0, where nxy is the steady-state nucleus distri- 
bution density). For that purpose, we resort to a boundary condition that 
removes from the states ensemble of  the volume V the states with a grown 
bubble and replace them by quasi-single-phase states. The boundary con- 
ditions to Eq. (15) are given in the following manner. At point 0 having 
coordinates x = 0, y = 0, where a source of nucleus bubbles is located, 
following Ref. 8, we prescribe a boundary condition 

nxy/goxy = 1 (16) 

Of  course, f rom the physical point of  view we prescribe such a condition, 
not at the very point 0, but at points that, on the one hand, are so remote 
from the point 0 that a bubble formed can be treated macroscopically, 
while, on the other hand, their distance to the point 0 can be neglected as 
compared with the distance to the pass point. 

The boundary condition 

n~y/<pxy =- 0 (16a) 

where y is an arbitrary value, x = x* >> xc, removes states with supercritica! 
bubbles from the states ensemble. 

We suppose that practically the entire drop nxy/go~y from one to zero 
occurs in the neighborhood of the pass, Therefore, we define the gradient 
nxy/go~y , similar to the one-dimensional case, in the form 

grad(n~y/rp~y) = Ca exp[�89 A t )  2] (17) 

which determines the solution sought for Eq. (15), corresponding to a curve 
going from the origin of  the coordinates through the pass. Here a is an 

3 The method of solving Eqs. (15) and (15a) was suggested by V. N. Likhachev. 
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unknown vector indicating the direction of most rapid descent Hxy/fDxy ; 
Ar = (Ax, Ay) is the radius vector of an arbitrary point, as drawn from 
the pass point; and 2 is an unknown number determining the rapidity of 
descent nxy/q)~y (2 ~< 0). 

Using the boundary conditions (16)-(16a), we find the constant C: 

C = ( - 2 /2g )  1/2 ( l  8) 

Substituting Eqs. (5), (13d), (17), and (18) into Eq. (15a), we obtain the 
flux of nuclei 

Q _ goVvcp~ 2 (_2NVC)1 /2  exp[_q~c Ar' A Ar 2(a Ar)27,~.  
2 + j,_,a (19) 

Due to the non-diagonal tensor 13, in the general case the direction of that 
flux does not coincide with the direction of the most rapid descent nx~,/q):, r 

or with the main axes of the pass, or with lines I and II (see Fig. 1). 
If  r-dependent formulas for A and I3 are derived, then expression (19) 

allows a vector field Q to be built on the plane (x,  y )  and the problem 
of the most probable trajectory of the nucleus fluctuation growth to be 
solved completely. 

Then, from the condition of the steady-state nucleation process, we 
derive an equation for a and 2: 

or  

- (Ar Aria) + X(Ar a)(a13a) = 0 

A13a = ) a(a13a) (20) 

Equation (20) is split UP into a characteristic equation 
A A 

A D a  = 2a (21) 

for determining the proper eigenvalues 2 and the proper eigenvectors a of 
matrix A D ,  and a condition for normalizing the proper eigenvector a" 

(aDa) = 1 (21a) 

Rewriting Eq. (21) at the pass point by using Eqs. (15) and (B17), we obtain 

^ ^ = [ D f / R ~  ( D / / R ~ ) ( 6  - co)/co7 
A D a  L(D//&)(6 - co)/co ( D / / R y ) ( 1  + co)/coj "a = 2a (22) 

where D f =- 30/4vcq, 6 = p / /p~  and co = pcrc/flv,tl are dimensionless param- 
eters; t/is the viscosity of the liquid [g cm -1 sec-1];/~ is the dimensionless 
condensation coefficient; and v t = (80/rcm) 1/2 is the mean thermal velocity 
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of  the vapor  molecules [cm sec-  1]. Thus,  we obtain  a linear system 

D r 2crsr 2aSc 6 - 0) 
x 90 x , + D ~  r 90 -~ Y ~ = -  2xa 

6 - 0 )  1 + 0 )  
D f N v  r - -  xa + D f N v  C - -  y~ = 2 y ,  

0) 0) 

On solving this system, we obtain  an expression for  the negative root  of  
Eq. (22), 

2 - 3fly, {[(1 - Z + 0))2 _~ 4 Z ] 1 / 2  _ (1 - Z nt- 0))} (23) 
8re 

where )~ = b0)/3 = 2cr/3f lW/ is a dimensionless parameter .  For  0) < 62 the 
p rob lem is marked ly  compl ica ted because of  the necessity of  taking into 
account  the inertia terms in Eq. (B5), and this lies outside the scope of  the 
present  paper .  

The proper  eigenvector a = (x, ,  y,) cor responding  to the given root  2 
has the fo rm 

a = ~ c  1 , ~  1 + 2 (24) 

In (x, y)- coordinates  the pass point  (1, 1) is invariable for all the physical 
values of  the parameters  re, ~/, and Pc; still, the direction a indicating the 
steepest descent nxy/q)xy depends ,  via 2, on all the physical parameters  of  
the p rob lem (see Fig. 1). In the limiting case of  a nonvolat i le  liquid 
(Pc ---' 0, co -*  0), we have 2 -~ - cr/2rcr/and a ~ ~:(1, 0), coinciding with the x 
axis. In the case of  (2rcq/a)2  ---, 0% a becomes antiparallel  to the y axis. 

On the basis o f  the normal iz ing condi t ion (21a), 

K 2 1 , ~ _ _ ~  1 +  a 2 

D S  Dx c c5 0) co 

• O 
6 - 0 )  c l  + 0 ) [  t 

x r 

= 1  

we find the value o f  ~:, which is equal to 

, 

(DxCG)l/2 , G ~ ~ - - - ~  1 q- 

4rcrl2 

ff 
~c - 1 > 0 (25) 
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From Eqs. (24) and (25), we find the modulus a, which is equal to 

-] ~ (1 -]- 21~/'])~)2]} 1/2 (26) 

To find the nucleation probability v in the volume V per unit time 
requires integrating Q along the axis passing through the pass point and 
perpendicular to the vector Q ~/5<a and dividing the result, according to 
Eq. (14), by 90- 

Yet, since div Q = 0, the integration result does not depend on the 
direction of the axis chosen. It would be more convenient to integrate Q 
along the axis perpendicular to vector a. Then Ar = Az-n o and (ano)= 0, 
where 

no : t ~ ( ~ - [ 1  + ~ ] ,  1) (27) 

is the unit vector which is perpendicular to a. From the condition n o = 1, 
we find 

f i =  1 + ( ~ ) 2  1 + (28) 

Taking into account Eqs. (14), (19), and (21a), we obtain 

v = - -  Q, d(Az) = - -  
go ~ go ~ a 

- Vv~pl2 ( - 2 N ~ )  1/2 e x p ( - ~ )  
2~za 

x exp - (no'Ano) 
oo 

< 

a L2rc(no'Ano) J 

where 

no'.qno = fi2N~<I1 

at any values of re, t/, Pc- 

a( zXz ) 

+ 2 Az(ano)2}(a/)a) d(Az) 

exp( -~c )  (29) 

(0 )~3)  2~ 1 + > 0  (30) 

Substituting Eqs. (23), (26), (28), and (30) into Eq. (29), we obtain 
an expression for the nucleation probability per unit time: 

c c [MG'I /2  V 2r'{3flvtOMG'~W2 
v-- = z )  e x p ( - W  (31) 
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where 

8rc). M ~ - [(1 - Z + ~0) 2 + 4Z] 1/2 - (1 - Z + 0~) ~> 0 
3,6vt 

1 -  + - - l > O x  

L ~  1 3 ( c ~ ) 2  1 -  > 0  

It is exactly formula (31) that defines the expression for the probability 
of the formation of a critical bubble in the volume V per second. 

This'expression is valid for the steady-state process of the homogeneous 
boiling up of a volatile liquid which is either under tension or superheated, 
far from the critical point, within the entire range of the viscosity and 
volatility of the liquid at not too great a supersaturation of the system. 
The influence of the inertial properties of the liquid and of the thermal 
relaxation at the "bubble-liquid" interface may be taken into account, 
following Ref. 19, by modifying the diffusion tensor b [see (22)] without 
changing the further procedure of deriving the final formula (31). 

4. D I S C U S S I O N  OF T H E  R E S U L T S  

The problem of the boiling up of a volatile liquid includes three physical 
parameters whose values determine the state of the system: the radius of a 
critical nucleus re, which is characteristic of the supersaturation of the system; 
the vapor pressure p| over the flat surface of the liquid, which is 
characteristic of its volatility; and the viscosity of the liquid ~/. In this case, 
we disregard the influence of the vapor density on the surface tension a. 
Writing Eq. (31) in the form 

V&2 exp 
- - ~ + 2 1 n \  L 16r/ ) J  

V ~  

= V& 2 exp[--fa(G) +f2(G, Pc, r/)] (32) 

we see that. If21 > f ,  if the viscosity and volatility of the liquid possess 
proper values. Thus, the criterion 

(_MG 3fly,Ore 2 '] 2~s c (33) 
In 16t/ II > 3--6- 

determines the ranges of values r c, Pc, and r/where the preexponential factor 
influences the value v more strongly than the work of critical nucleus 
formation. Several such ranges are revealed by considering the limiting 
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cases of  the nucleation problem, which are considered below. A thorough 
examination of the criterion (33) lies outside the scope of  the present paper. 
In the process of  solving the present problem, instead of three dimensional 
parameters rc, p~ ,  and r/we have introduced three dimensionless parameters:  

6 = pvC/p~, b = 2 a / r c p  C, ;~ =- 2a /3~v ,~ l  (34) 

where Pc = P~ e x p ( -  2a/ptOrc) .  

It  is expedient to combine two of  t h e m  into a dimensionless 
parameter  ~o: 

o9 = 3 z / b  = pcrc/~V,r/ (35) 

which contains all three dimensional parameters  and facilitates the examin- 
ation of the limiting cases of  the problem. Let us examine various limiting 
values of  the parameter  co, included in the final formula (31) through the 
factor M G / L .  

To the limiting case co ~ 0 there correspond the following limiting values 
of  the physical parameters : r / ~  ~., or r C --~ 0, or pc--+ 0. In the case of  an 
infinitely viscous liquid 2 ~ 0, D x  c ~ 0, and v ~ 0. The case of  an infinitely 
high supersaturation of the system (r c ~ 0) cannot  be examined within the 
scope of  the present model, which is intended for small and moderate super- 
heating and tensile stretching of  the liquid. 

For  Pc ~ 0, we pass over to the examination of a nonvolatile liquid. 
The process of  cavitation in such a liquid was examined in Ref. 18. 
Examination of the shape (5) in coordinates (v, p) shows that one of the pass 
axes " res t s"  on the v axis, while the trough leading through the pass becomes 
infinitely narrow. Hence, the problem becomes one-dimensional, which corre- 
sponds to the setting value of one variable v of  the nucleus. The 
expression (31) for the nucleation probabili ty passes over into the limiting 
expression 

v = (Vpt2rc/211)(06)  1/2 exp( - qJc) (36) 

which coincides with formula (36) of  Ref. 18. 

Let us note that in terms of our symbols the corresponding expression 
(34) in Ref. 19 is equal to 

pv c Vpl2rc 
V - -  - -  ( 0 0 - )  1 / 2  e x p ( -  qJc) 

Pl 2q 

that is, it underrates the result by a factor of  p J / p ~  and erroneously asserts 
the impossibility of  nucleation in a nonvolatile liquid. 

To the opposite limiting case co ~ ~ there correspond the following 
limiting values of  the physical parameters:  r~ ~ ~ or q -~ 0. For the case 
r c ~ ~ it is no longer a question of whether there is superheating of  -the 
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liquid or an applied tension stress. In this case, the work of forming an 
infinitely great critical nucleus also will be infinitely great; i.e., the boiling 
up of the liquid becomes impossible. 4 

For r / ~  0, we pass over to the examination of a nonviscous (ideal), 
volatile liquid. If the influence of  the inertia of the liquid is disregarded in 
this region, then for the ideal liquid we obtain from (B8) the expression 
A y - - - � 8 9  Ax, i.e., a single-valued relationship of the variables x and y, 
which renders the problem one-dimensional. 

From the physical point of  view, this means that at any finite fluctuation 
of the pressure in the bubble its volume will instantaneously change in 
such a way that the bubble remains in mechanical equilibrium. Thus, in the 
process of its fluctuation growth the bubble always remains on the line (II) 
of mechanical equilibrium, which is guaranteed by an infinitely great value 
o f / )  c. Taking into account the inertial properties of the liquid for r / - .  0 
destroys the rigid correlation between Ax and Ay, so that in the general 
case the nucleation problem remains two-dimensional for the ideal liquid, 
too. In this case, taking into account the inertia of  the liquid will influence 
the probability of nucleation v by changing the expression for /3 c (see 
Appendix B). 

To obtain quantitative results, we take into account (B7) and consider 
the region 

ptma/8rl << tl/r c << pc/fly, (37) 

in which co >> 1, but its value is not so great that the inertial properties of the 
liquid begin to exert their influence. 

At b/3 >> 1, which corresponds to a tension pressure - P  >> 2p~, 
expression (31) reduces to the form 

fO\ l l  2 
- VptZrc (2a - 3p~rc)~g) exp(-qJ<) (38) 

v 4q 

which passes over into expression (36) when we neglect 3/b as compared 
with 1. For  b/3 << 1, which corresponds to positive and limited negative values 
of P, expression (31)becomes 

v P~ 2(i ~ ~b) e x p ( -  q~) (39) 

On neglecting b/3, we find that this expression would differ from formula (36) 
in Ref. 19, by a factor pJp~, if the temperature effects at the bubble interphase 
were not taken into account in that formula. 

4 It follows from (B7) that at r c ~ ~o the influence of the inertia of the liquid on the value 
of the diffusion tensor will have to be taken into account. 
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For values b/3 near 1, the general formula (31) has to be applied, 
which, when b/3 passes through 1, remains continuous, without causing a 
nonphysical drop of  the nucleation rate. 

We have examined the limiting cases of  the two-dimensional nucleation 
problem where, depending upon the numerical value of o~, one of the two 
parameters-- the volatility or the viscosity of  the liquid--is the determining 
one for the kinetics of formation of the new phase. Expression (35) for m 
includes re, which is connected to the degree of supersaturation of  the system. 
Hence, for any liquid the entire range of supersaturation of the system 
may be regarded as being made up of  three regimes: volatile liquid (o~ >> 1), 
when its viscosity may be neglected; viscous liquid (~o << 1), when its volatility 
may be neglected; and an intermediate mode (co -~ 1), when the liquid must 
be considered as being simultaneously viscous and volatile. Thus, in 
accordance with expression (35), in the case of strongly volatile liquids the 
intermediate mode is shifted to higher degrees of supersaturation, and in the 
case of  strongly viscous liquids, to lower degrees of supersaturation. 

It is a knowledge of  the kinetic mode of the boiling up of a liquid 
that enables one to choose the desired form of preexponential factor. 
Otherwise, considerable errors are possible in the determination of the limit 
of superheating or tensile stressing of the liquid. Now, let us consider as an 
example the case of the boiling up of he xamethyldisiloxane (a liquid which 
is volatile and of  low viscosity under ordinary conditions). If in this case the 
limit of  the liquid tension is calculated by formula (39) corresponding to the 
limiting case of a low-viscosity volatile liquid, which would seem to be 
appropriate at first glance, then we obtain P l i m  " ~  - -  136 atm. However, the 
calculation of co shows that the liquid tension limit is attained at ~ << 1 : this 
corresponds to the opposite limiting case of a very viscous nonvolatile liquid. 
Hence, the calculation ought to be performed by formula (36); this gives 
the liquid tension limit Plim ~ - 1 4 3  atm, which differs from the afore- 
mentioned, incorrect value by about 5~ . 

In this case, the probability of  nucleation at P l i m - -  136 atm varies 
from 3 sec -1 [according to formula (39)] to 8 x 10-4 sec -1 [-according to 
formula (36)], that is, by four orders of magnitude. By the way, if the 
limit of the extension of liquid is calculated according to the correct 
mode (~o << 1), but by the erroneous formula (36) of Ref. 19, it will be 
equal to - 151 atm. Thus, the scatter among various erroneous values of the 
extension limit is about 10~ 

The coefficient of evaporation # may also exert a substantial influence on 
the preexponential factor and, hence, the nucleation rate. For  pure liquids, 
however, it usually varies but slightly and is close to unity (probably, under 
especially pure conditions, it may be close to 1 even for water). However, 
if liquid contains surfactants of the type of medium aliphatic alcohols, these, 
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on being adsorbed on subcritical nuclei and forming a dense monolayer, can 
reduce fl by many orders of magnitude. Thus, for example, cetyl alcohol 
(which exhibits a very low solubility in water) can reduce fl to a value 
of the order of 10 -5 by the formation of a monolayer on the water 
surface.(22,23) 

In this case, a reduction in the preexponential factor may outweigh the 
growth of the exponent due to a decrease in the work of formation of the 
critical nucleus. That such an effect is real follows from the observation 
that adding a surfactant to toluene ~z4) prevents the evolution of the water 
dissolved in toluene as the temperature decreases. 

5. C O N C L U S I O N S  A N D  S U M M A R Y  

A macroscopic examination of the kinetics of the boiling up of a volatile 
liquid suggests the necessity of characterizing the nucleus of a new phase, 
not by one, but by two variables--the volume v of a bubble and the 
pressure of vapor in it p. 

In this case, the fluctuation growth of a vapor-containing bubble should 
be treated as the two-dimensional diffusion of a nucleus in the plane (v, p). 
Superimposed on this plane is the shape of the free energy surface of the 
system "liquid plus bubble with vapor," depending on the degree of super- 
heating or that of the tensile stretching of the liquid, which are supposed in 
the present work to. be not too high. 

On examining the potential shape on the plane (v, p), it appears that the 
labile equilibrium point of the system is actually the top of a saddle-type 
pass leading from the region of  heterophase fluctuations to the two-phase 
region. Differential equations have been derived for the watershed line 
between these two regions, and for the path of the fluctuation growth of a 
subcritical nucleus which is the most advantageous from energy considera- 
tions. The latter line is compared with the mechanical and the thermodynamic 
equilibrium lines o f  the nucleus. The influence of a variation in the mean 
curvature of the free energy surface at the pass point on the pass width and 
the probability of nucleation is considered. A two-dimensional nucleus distri- 
bution function with respect to its variables has been derived. We have also 
calculated a nondiagonal diffusion tensor in the space (v, p) close to the pass 
by using the joint approximate solution of  the phenomenological equations 
of dynamics of variations in the bubble volume and in the number of 
molecules of vapor in it. 

A two-dimensional equation of  the kinetics of the formation of a new 
phase of the Kramers type is suggested to solve the problem of the boiling up 
of volatile liquids. 

This equation has been solved for the steady-state case; and a general 
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expression (31) has been derived for the probability of homogeneous 
nucleation in a given volume per unit time for any volatility and viscosity 
of a liquid far from its critical point, for not too great tensile stretching 
or superheating. Various limiting cases have been considered, and errors in the 
work of other authors have been corrected. A dimensionless parameter ~o 
is introduced, allowing the entire range of superheating or tension of an 
arbitrary liquid to be subdivided into three regimes: the boiling up of a low- 
volatility viscous liquid; the boiling up of a low-viscosity, volatile liquid; 
and an intermediate mode. 

A criterion (33) has been established allowing the regions of the values 
of viscosity, volatility, and degree of superheating or tensile stretching of the 
liquid to be determined in which the preexponential factor influences the 
probability of the boiling up of the liquid to a greater extent than the work of 
formation of  the critical nucleus, which is included in the exponent. 

A P P E N D I X  A 

In Section 3 it was pointed out that in the nucleation process each 
state of the volume V is characterized by four variables: the energy 
E,N(V, p )  of  the volume V, the number of  molecules N in this volume, the 
volume of  the bubble v, and the pressure of vapor p in the bubble. The 
last two variables have a physical sense only for states containing quasi- 
macroscopic nuclei of a new phase. 

At small and moderate supersaturations of  the system, the region of 
heterophase fluctuations and the two-phase region of the four-dimensional 
space (E, N, v, p) are divided by a high-energy "ridge." In such a case, in 
order to calculate the flux of states of V from the first region to the second 
one, there is no need to examine in detail the growth of the new-phase 
nucleus, including its microscopic stage. It is quite sufficient to examine, on 
the one hand, states close to the metastable equilibrium of the system, i:e., 
states of  a homogeneous liquid being superheated or under tension, and, on 
the other hand, states close to the labile equilibrium of the system, con- 
taining a macroscopic, near-critical bubble. 

We will consider that the near-metastable states correspond to values 
v = p  = 0 ,  5 i.e., they are described by only two variables, E and N, in 
contrast to the" near-labile states. The probability that such a near- 
labile state of the volume V is in the nth quantum state having energy 
F~nu and comprises N molecules of  liquid (in the single-phase state of the 
surrounding medium W -  V) is equal to (18) 

W,N = C e x p { ( I / k ) S [ E o '  - AE ,  No'  - AN]} (A1) 
5 The presence -of microscopic nuclei influences .the value of the chemical potential of the 

homogeneous liquid, 
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where C is the usual normalizing factor, which is constant for the given 
reservoir W -  V, independent of  the states of  volume V << W; k is the 
Boltzmann constant;  S is the entropy of the medium W -  V in the state 
corresponding to the given state of  V; Eo' and N o' are the energy and the 
number of  molecules of  volume W -  V, respectively, in the state of  equilib- 
rium with the metastable state of  volume V, which is characterized by 
Eo and N o ; AE = E,N -- Eo ; AN = N - N o ; the subscript zero characterizes 
the metastable state. 

Expanding S in Eq. (A1) in a power series with respect to powers of  
AE and AN close to the metastable state, and then summing w,, N with respect 
to n and N, we find the total probability that the volume V has no macro- 
bubbles, i.e., it is found near the point (v = 0 ; p  = 0): 

go = ~ W.N = Ao ~ exp #l~ AN - AFN ~ (A2) 
n,N N 0 

where A o = C exp[( l /k )So] ,  and/~t ~ is the chemical potential of  the liquid 
in volume W at the metastable state of  volume V; AFN = FN -- FN ~ is the 
change in the free energy F N of volume V as compared with its metastable 
state; So is the full entropy of volume W when volume V is in the 
metastable state. 

In considering the probability of  near-labile states V, let us try to 
separate out an expression similar to Eq. (A2). This is necessary in order 
to find the change in the total probability of  the states of  volume V when 
it is passing over from the metastable state into the labile state, 

In accordance with Ref. 21, the probability dW,N(v,p) of such a state 
of V being in the nth quantum state with energy E,N(V, p), comprising N 
molecules of  liquid, and having bubble volume and pressure within the ranges 
(v, v + dr) and (p, p + dp), respectively, is equal to 

dw,~(v, p) = C exp[(1/k)S(Ec'  - AEc, N~' - ANr dp (A3) 

where C is the normalizing factor introduced earlier; S is the entropy of the 
medium W -  V in the state corresponding to the given state of  volume V; 
E~' and Arc' are the energy and the number of  molecules of  the medium W - V, 
respectively, in the state corresponding to the labile equilibrium state V; 
AE~ = E,N(V, p) -- E~ and ANt = N - N~ are the variations in the energy and 
in the number of  molecules of volume V as compared with the labile 
equilibrium state; c is the index characteristic of  the labile equilibrium 
state. 

By expanding S in Eq. (A3) with respect to powers of AE and AN close 
to the labile equilibrium state and then summing dWnNQ), p) over n and N, 
we obtain, as in Ref. 18, the probability dw(v, p) that the volume V contains 
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a macroscopic bubble having a volume within the range (v, v + dr) with a 
vapor pressure within the range (p ,p  + dp): 

Z AXe - dw(v, p) = ~ dW,N(V, p) = Acp~ exp AUNvp dv dp (A4) 
n,N 0 N 0 

where A c = C exp[ (1/k )Sc], plVSO is the value of the Jacobian c~( Nt, N~)/O(v, p) 
of the transition from the dimensionless space of variables (Ng, N~) to the 
dimension space (v, p), and N v is the number of vapor molecules in a bubble 
having volume v with pressure p; N l is the number of liquid molecules 
filling the bubble of  volume v at a constant Pt; I~ c is the chemical potential 
of the liquid in W at the labile state of V; AF~Nve = FNv p - -UN~ p is the 
change in the free energy of the system "liquid plus bubble with vapor"  in 
volume V as compared with the labile equilibrium state; and S~ is the 
total entropy of volume W at the labile state of V. 

In the expression for Fu~p, it is important to separate out the terms that 
do not depend on N and remove them from the sum over N. For this 
purpose, we consider the system "liquid plus bubble with vapor"  as a diluted 
solution of bubbles in a liquid. In accordance with the thermodynamics of  
solutions, the free energy of our system is equal to (21) 

FN~ p ~-- F N + Fvp + 0 ln(1/N) (15) 

where FN is the bulk free energy of N molecules in volume ( V -  v), F~p is 
the free energy of a bubble characterized by v and p, and the third term takes 
into account the entropy of "mixing" the bubble and the liquid. 

Then 

AF~Nvp = AF S + AFCp - 0 ln(N/N~f) (A6) 

where Nv ~ is the number of  liquid molecules in volume (V - vc). In that case, 
the logarithmic term may be neglected in view of the fact that we try to 
determine AF}vp only in the neighborhood of the labile equilibrium 
point. 

Substituting Eq. (16) into Eq. (A4), we obtain 

dw(v, p! = g~Pt ~ exp - dv dp (A7) 

where 

S~ exp #l~ ANt 2 AFS 
g~ = ~ w~.N = C exp ~- ~N 

n,N 
(A8) 

In comparing gc with go, we shall, taking into account the inequality (1), 
as well as the fact that the temperature 0 and the supersaturation of the 
system are invariable, neglect the difference between V -  v and V; we shall 
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also assume /~{-~/~0. We also assume that the existence of a nucleus in 
volume V practically does not change the fluctuations of  the number of 
molecules AN and of the free energy A F  N of volume V. Then, on substituting 
Eq. (A2) into Eq. (18), we obtain 

gc ~- go e x p ( A S / k )  (A9) 

where AS = Sc - So is the increase in the entropy of  the volume that takes 
place when V passes over from the metastable state of  the uniform liquid 
into the unstable state of  the system "liquid plus bubble," which is the 
thermodynamic characteristic of  the process of  formation of the new phase. 

With the volume W isolated, the increase in entropy AS is equal to the 
change in the system free energy AFN~p when the critical nucleus forms 
divided by the absolute temperature T. 

Using Eq. (A5), we obtain 

A S  _ A F N v  p _ FN c q- FCp + 0 ln(1/Uv)  - FN~ -- ~ --gc~v + In N v (A10) 
k 0 0 0 

Substituting Eqs. (19) and (110) into Eq. (A7), we obtain 

dw(v ,p )  = ( p ( v , p ) d v d p = g o N v p z ~ e x p ( - F ~ ) d v d p  (1.11) 

We assume that the appearance of a macronucleus in V does not practic- 
ally change the fluctuation of the number  of  particles nor that of  the energy 
of volume V. Thus, we arrive at the conclusion that the variables E and N, 
which along with v and p are characteristic of  the state of  volume V, are 
almost an invariable "background"  that accompanies the new-phase forma- 
tion in V. Therefore, we may pass over from the four-dimensional space 
(E, N, v, p) to the two-dimensional space of the nucleus variables; each point 
(v,p) of  that space corresponds to the sum taken over n and N of all 
possible states (E, N, v, p) having fixed v and p. 

In that case, the probability density q~(v, p) is an equilibrium bubble 
distribution function with respect to the variables v and p, which is connected 
to the shape of the free energy of the system. 

Passing over to the dimensionless variables x - v/vc, y -- P/Pc, ~ - F~v/O, 
we obtain in the space (x, y) 

d w ( x , y ) = ~ p x ,  d x d y = g o N v N ~ C N v C e x p [ - t P ( x , y ) ] d x d y  (A12) 

where Nt c = vcp I and Nv c = vcpv c. 

A P P E N D I X  B 

To find the diffusion tensor in any diffusion problem one must know the 
forces that are applied to the system, as well as the velocity at which it moves 
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under the effect of those forces. Zeldovich gave such a formulation of  the 
nucleation problem, in which the forces applied to the system are given by 
the equilibrium distribution function ~Oxy, which determines the potential 
shape qJ(x, y) in the space (x, y): 

F = grad(ln (Pxr) = - g r a d  q~(x, y) (B1) 

The velocity 2 =- ~/vc is found from a phenomenological equation of the 
radial motion of the surface of a growing bubble at rest, while j) - t~/Pc is 
found from an equation defining the vapor mass balance in the bubble. The 
surface of  the bubble moves at a velocity f, while the liquid adjoining the 
surface moves at a rate u(r). The difference in the velocities causes a mass 
flow, 4nr2mpl[f  - u(r)], whichmust  be equal to the liquid evaporation rate 
in the bubble. 

Thus, the mass balance written for the bubble surface yields (25) 

d(mN~) _ d (4nr3mpv) = 4rcr2mpt[i _ u(r)] (B2) 
dt dt 

whence, taking into account the continuity equation for a noncompressible 
liquid, it follows that 

u = ( R ) 2 ( i  4 ]~2p~) (B3) 

where R is the radius vector of an arbitrary point of  the liquid, drawn from 
the bubble center. 

To derive the equation of motion of the bubble surface we use the 
Navier-Stokes equation. In the case of the spherical symmetry of the bubble, 
a noncompressible Newtonian liquid, and the absence of  external mass forces, 
that equation reduces to the form (2s) 

Ou ~u c~p~ ~2u 
mPl ~ + pzmu Or 3r 2tl &2 (B4) 

where Prr is the radial component of the radial pressure. 
Substituting expression (B3) into this equation and integrating it over 

the radius between the bubble surface and infinity, we obtain 

mp,ri" + }mp l i  2 -- rnptr 2 M r  + ~ \ M~ I 

2o i ~1~ 
= - P + p - - - - - 4 r /  + 4 r / - -  (B5) 

r r Mr 

Here M r = 3M t = 4nr3plm is the effective mass of  an expanding bubble, 
which has been introduced by analogy with Ref. 26, and which is equal to 
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three times the mass M~ of liquid in the bubble volume; M v = mNv is the 
mass of vapor in the bubble. Equation (B5) differs from the "generalized 
Rayleigh equation ''(26) in that it includes terms describing a change in the 
mass of vapor M v in the bubble with time. 

Close to the pass point, the difference between the pressure of the vapor p 
in the bubble and that of the saturated vapor Pr in the bubble is small; thus, 
the rate of  variation in the vapor mass in the bubble, calculated on the 
basis of the vapor mass balance for the bubble, may be represented in 
the form 

ffIv _ Tzflvtrc2m 3~zflv:cpcm ( b p ~  A r 3~v~ 
0 [ P r -  p] ~ 0 1 + ~  P~ / - ~ A M ~  (B6) 

where p~ is related to the saturated vapor pressure over the flat surface p~ 
by Kelvin's formula: 

p~ = p~ e x p ( -  2a/plOr) (B7) 

Since a fairly steep pass is present in the problem, the problem of 
calculating the diffusion tensor as a function of  v and p can be replaced by 
the simpler problem of calculating it in the neighborhood of the pass, where 
small forces F~ and Fy and rates A and y may be regarded as linear with 
respect to Ax and Ay: 

F~ = - OW/ex  = - A x / R ~ ,  F ,  = - OW/~y = - Ay /Ry  (B8) 

Neglecting terms in Eq. (B5) with f2 and 21)/~ 2 and taking into account 
that ?" = : d:/dr and M~ = ~:/~ d M d d M ~ ,  we obtain 

+ p,mrc dr : ~- Ap + rc 2 + Mr \ 16r/ / (B9) 

It is easy to show from Eq. (B5), that the criteria of smallness of the 
inertial terms are 6 

In~ = 3flv:cplm/16rl << 1 (B10) 

Int = p~mar~/8rl 2 << 1 (B11) 

The value 

;~ = Int/In v = 2~r/3~v:/ (B12) 

determines the relative importance of  the inertial properties of liquid and gas. 
From Eqs. (B10) and (Bl l )  it follows that for a fairly low viscosity or 

superheating of the liquid, the inertial terms will have to be taken into account. 
To take into account the inertial terms, however, it is not enough to 

6 The criterion (B11) practically coincides with a similar criterion (35) of Ref. 19. 
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introduce corrections to the generalized diffusion tensor /3  as was done in 
Ref. 19. The appropriate means of  taking into account the inertia of the 
liquid for the case In~ > 1 was carried out in Ref. 27. 

For the sake of  simplicity, we shall disregard the inertia term. Taking 
into account Eq. (B7), we transform Eqs. (B9) and (B6) in the following 
manner: 

a r c (  p : ~  2nflv,rnapv ~ mT~flUtrc 2 
i ~ 2 ~  Ar + 4r/ 1 -  Ap, 21;/~ ~ Ar Ap 

pr plO 0 

or passing over to coordinates x and y, we obtain 

) 2 ~  A x + - - c o  Ay (B13) 

)? ~ ~ (6 - co) Ax - (1 + co) Ay (B14) 

To derive the relationship between the forces and the velocities determining 
the tensor /3, we use Eqs. (15)-(15a); we consider the tensor /3 and the 
forces as functions that vary in the neighborhood of the pass much more 
slowly than do nxy and grad nxy. Thus, we reduce Eqs. (15)-(15a) to the 
following form : 

~l/lxy Onx, _ (DSFx + D~yFy) ~ - x  - (Dy~F' + D~xFx) Only 
c?t Oy 

c (?2nxr O2F/xy ~ (B15) 
+ D~ ~ + Dr c c?y ~ + (D~y + D~x) ~?x ~?y 

On writing this diffusion equation in the external field in the form of a 
Fokker-Planck equation 

Onxy . Only . c3nxy c ~2nxy c ~2nxy 02n~y 
Ot - X ~ x  -- Y ~-y + Dx ~ x  2 + D r  ~y2 + (D~y + D;':) ax @ 

we derive the following system of  equations 

DSF~ + D;yF r = 2, D~Fx + D,~Fy = ;9 (B16) 

Substituting Eqs. (B8), (B13), and (B14) into Eq. (B16), we obtain the system 
of equations 

c 2o-sc b 3p~ 3pc co - 6 Ay 
Dx 9 0 A x  - D~yU: Ay = ~ Ax + 4tl co 

2as~ Ax b 3flvt (a - co) Ax 3fly, D;x 9 0 -  - DyCNv c Ay = 3 4r~- - ~ (1 + co) Ay 
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diffusion tensor/3 at the pass point 

/3c = ( D /  
\ D / ( 6  - co)/co 

where 

B. V. Derjaguin, A. V. Prokhorov, and N. N. Tunitskij 

Equating the coefficients at Ax and at Ay, we obtain the value of the 

D / ( 6  - co)/co~ (B 17) 
DS(1 + co)/co) 

D x  c = 3 0 / 4 v j 1  

From the criteria co << 1 and 6 << 1 it is possible to determine the relationship 
of the viscosity, volatility, and the superheating of the liquid for which the 
nondiagonal form o f / 3  may be neglected. For example, low-volatility or 
very viscous liquids correspond to such a situation. 
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